# **WURTH ELEKTRONIK** MORE THAN YOU EXPECT

# POWERLAMELLA PRESS-FIT

Powerelements





**PowerLamella Press-fit** Powerelements are the pluggable high current contacts from Würth Elektronik ICS. They are fully compatible with PowerRadsok bolts. This allows you to reduce the assembly work for your service technicians or your customers. In addition to the bush, we also offer the matching pin for the board-to-board connection, and the cable lug for the wire-to-board connection. Depending on the layout, currents up to 400 amperes are possible.

#### Applications

- Contacting of switches, fuses, etc.
- Wire-to-board
- Board-to-board

## Processing

PowerLamella Press-fit Powerelements are pressed into the PCB. Soldering is not required, so there is no temperature stress. The manufacturing step easily fits into the process and is highly cost effective. With the aid of corresponding tools, several Powerelements can be pressed-in simultaneously.

## **Processing information**

- For assembling prototypes, no special equipment is required for pressing-in, as a simple toggle press is sufficient.
- The PCB has to be supported during the press-fit process.
- The press force has to be applied at a 90° angle to the PCB.
- Plated through holes of the PCB must be executed according to the specifications of Wurth Elektronik ICS.
- The PowerLamella Press-fit high current contacts are designed for pressing-in, so please note a soldering process is not intended.
- Cable lug has to be processed with suitable crimping tool.
- Use only with suitable press-fit tool and fixing materials (see processing instructions).

| Technical data            |                                                                    |  |  |  |  |  |  |
|---------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Current carrying capacity | see table on the back                                              |  |  |  |  |  |  |
| Material                  | base body and bolt: CuZn39Pb3<br>basket: stainless steel           |  |  |  |  |  |  |
| Surfaces                  | base body and bolt: tin-plated<br>(standard)<br>basket: tin-plated |  |  |  |  |  |  |

| Dimensions (standard) |                          |  |  |  |  |  |
|-----------------------|--------------------------|--|--|--|--|--|
| Length x width        | from 9 x 9 mm            |  |  |  |  |  |
| Height above PCB      | from 14.0 to 40.2 mm     |  |  |  |  |  |
| Pin length            | 3.5 mm, others on demand |  |  |  |  |  |
| Pin diagonal          | 1.6 mm, others on demand |  |  |  |  |  |

| PCB           |              |
|---------------|--------------|
| Base material | FR4 (EP-GC-) |
| PCB thickness | from 1.5 mm  |

| Processing parameters |                                         |
|-----------------------|-----------------------------------------|
| Press-in force        | min. 60 N per pin<br>max. 250 N per pin |
| Retention force       | 60 – 80 % of the press-in force         |
| Press-in speed        | 100 – 250 mm/min                        |



With comprehensive engineering expertise and as a pioneer for Powerelements, we will meet your requirements and find the best technical and economical solution.





REACH COMPLIANT

RoHS COMPLIANT

## Powerelements

#### PCB design

The PCB has to be designed in accordance with the latest edition of IPC A 600.

For solid press-fit technology, the PCBs are to be finished according to Würth Elektronik ICS Press-fit specifications. Particular attention should be paid to the drill diameter and the copper thickness.

| Würth Elektronik ICS – Press-fit specification 5.1 (Example for 1.6 mm pin)  |                                             |                                                              |  |  |  |  |  |
|------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| Drill Ø                                                                      | drill tool<br>drill hole                    | 1.60 mm<br>1.60 - 0.025 mm                                   |  |  |  |  |  |
| Cu Cu-H                                                                      | Cu - in Hole<br>Annular Ring                | Average 30 – 60 μm<br>min. 25 μm, max. 80 μm*<br>min. 125 μm |  |  |  |  |  |
| End Ø                                                                        | depends on surface<br>HAL<br>chem. surfaces | (1.45 +/- 0.05 mm)<br>(1.475 +/- 0.05 mm)                    |  |  |  |  |  |
| <b>Note:</b> For press-fit technology, drill Ø and copper thickness are fix. |                                             |                                                              |  |  |  |  |  |

## Current carrying capacity

The current carrying capacity of a press-fit connection always has to be considered in the context of the overall system. The press-fit zone has a very low electrical contact resistance of 100 – 200  $\mu\Omega$ 

The limiting factor therefore usually lies in the PCB layout, and also in the connection of a feed line.

Depending on the system structure, the values of the derating curve shown may vary.

The plug-in elements have a contact resistance of:

- 0.2 mΩ at Ø 3.6 mm,
- 0.09 mΩ at Ø 6.0 mm and
- 0.05 mΩ at Ø 10.0 mm.

| Deratir                                     |       |    | r Pov | verL | ame    | lla Pı | ess- | fit |    |         |     |     |     |
|---------------------------------------------|-------|----|-------|------|--------|--------|------|-----|----|---------|-----|-----|-----|
| 350 -<br>325 -<br>300 -<br>275 -<br>250 -   | 10 mm |    | 8     | mm - | _      | _      |      |     |    |         |     |     |     |
| 4 225 -<br>200 -<br>175 -<br>150 -<br>125 - | 6 mm  | mm |       |      |        |        |      |     |    |         |     |     |     |
| 75 -<br>50 -<br>25 -<br>0 -                 | 10    | 20 | 30    | 40   | 50     | 60     | 70   | 80  | 90 | 100     | 110 | 120 | 130 |
|                                             |       |    |       |      | rature |        |      |     |    | r 105µr |     |     |     |

| Overview of PowerLamella Press-fit standard products |         |         |         |         |  |  |  |  |
|------------------------------------------------------|---------|---------|---------|---------|--|--|--|--|
|                                                      |         |         |         |         |  |  |  |  |
| Diameter plug-in system                              | 3.6 mm  | 6.0 mm  | 8.0 mm  | 10.0 mm |  |  |  |  |
| Bolt Part-No.                                        | K93324  | K93325  | K93326  | K95722  |  |  |  |  |
| Bush Part-No.                                        | S96774  | S96651  | S97061  | S96777  |  |  |  |  |
| Cable lug Part-No.                                   | LA96718 | LA96722 | LA96728 | LA96736 |  |  |  |  |
| Current carrying capacity at 20 °C*                  | ~151 A  | ~ 199 A | ~ 246 A | ~ 345 A |  |  |  |  |
| Current carrying capacity at 85 °C*                  | ~ 91 A  | ~ 125 A | ~ 156 A | ~ 208 A |  |  |  |  |
| Plug-in force                                        | 24 N    | 43 N    | 46 N    | 54 N    |  |  |  |  |
| Drawing force                                        | 16 N    | 26 N    | 44 N    | 53 N    |  |  |  |  |

<sup>\*</sup> Recommended value for system design based on PCB limiting temperature of 125°C

#### Supplies

Press-fit tools and plates are available on demand.

For more information visit us at: www.powerelement.com or call: +49 7940 9810-4444

## Würth Elektronik ICS GmbH & Co. KG **Intelligent Power & Control Systems**

Gewerbepark Waldzimmern · Würthstraße 1 74676 Niedernhall · Germany

+49 7940 9810-0 · Fax +49 7940 9810-1099 ics@we-online.com · www.we-online.com/ics

2 | 2

We reserve the right to make technical changes and changes to the product range. No liability for misprints and errors

<sup>\*</sup>single measurement points in microsection